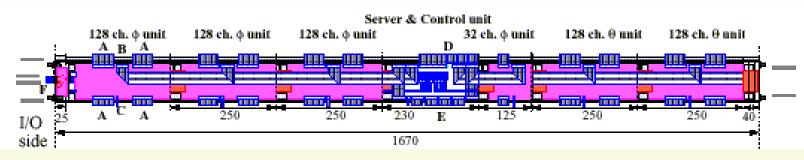

## **BTI Status**

R. Martinelli I.N.F.N. Sezione di Padova

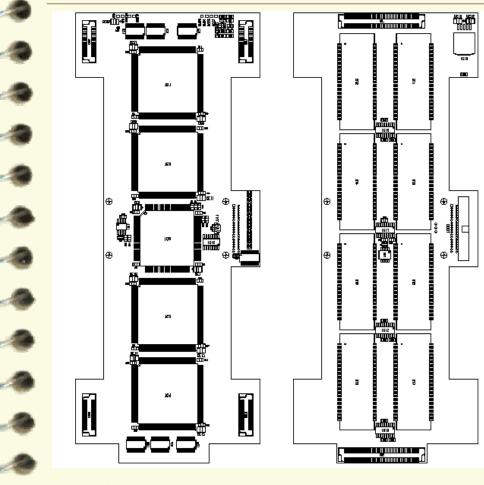

### DT Chamber Electronics Block Scheme



# **DT** Chamber Electronics layout



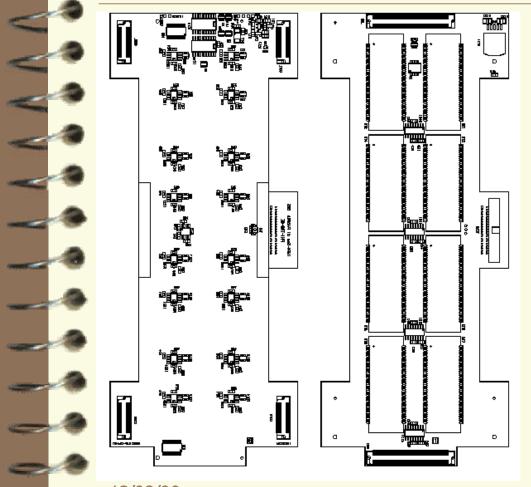
## DT Chamber Trigger layout




From the I/O side:

- I/O board: power decoupling, SC connectors, ...
- three 128 channels Phi\_TRB: BTI, TRACO and TSS
- Server and Control board: chamber services, SC interface
- one 32 channels Phi\_TRB: BTI, TRACO and TSS
- two 128 channels Theta\_TRB: BTI

Each PCB has connections to its neighbours for control signals distribution. Chamber signals are received via flat cables connecting the ROB to the FE boards (A). Each TRB sends trigger data to the Server board using a dedicated flat cable (B). Each ROB is connected to the Sector Collector via a dedicated serial link (C). The Server and Control unit has connections to chamber electronics (D) for monitoring and control purposes, and connections to the Sector Collector for trigger data transmission (E).


## DT Chamber PHI Trigger board



#### PHI\_TRB

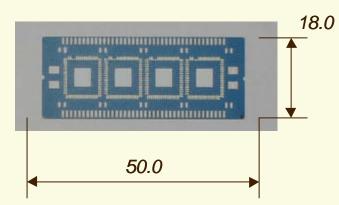
- 128 trigger channels
- 3.3V 10W power supply
- 40MHz clock
- > 8 BTIM + 4 TRACO + 1 TSS
- > single PECL clock input @ 40MHz
- > low skew clock distribution
- > temperature sensor
- > JTAG circuitry
- > low-drop regulator with over-voltage
  and over-current protection
- > on/off control and isolation switches

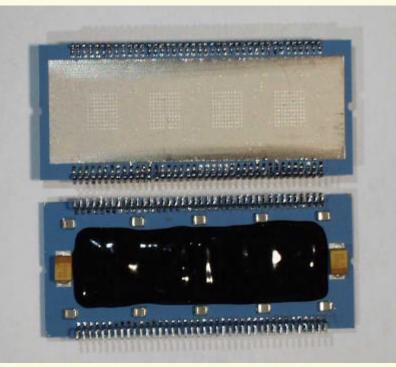
## DT Chamber THETA Trigger board



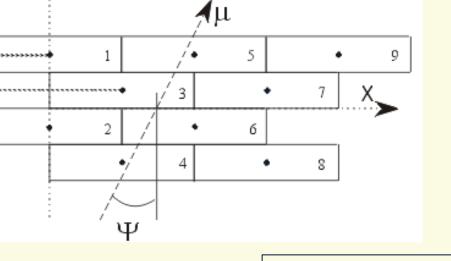
#### THETA\_TRB

- 128 trigger channels
- 3.3V 10W power supply
- 40MHz clock


#### > 8 BTIM

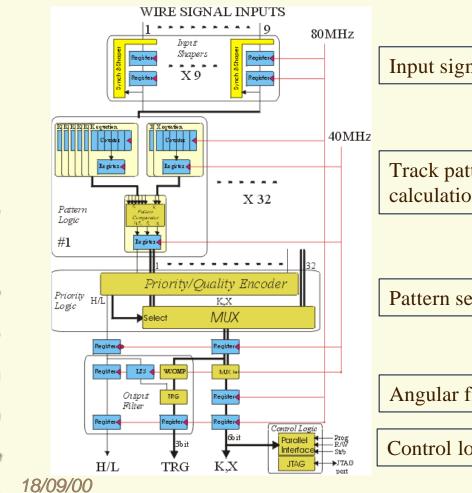

- > single PECL clock input @ 40MHz
- > low skew clock distribution
- > temperature sensor
- > JTAG circuitry
- > low-drop regulator with over-voltage
  and over-current protection
- > on/off control and isolation switches

## BTI Multi-Chip Module


#### LTCC substrate

- 4 BTI dies
- 3.3V 0.85W
- 80 I/O
- 40MHz and 80MHz clocks






## **BTI** Functionality



- Detection of single tracks on 9 wires
- Trigger on 3 and 4 out of 4 hit planes with quality flag output
- Track angle and position calculation
- Input signal edge triggered with programmable dead time
- Programmable drift velocity parameter
- Programmable angular acceptance
- Programmable low quality trigger suppression (LTS)
- BIST circuitry and JTAG interface
- Programming via JTAG and Parallel Interface
- 3.3V 250mW, 80MHz sampling clock
- $\bullet$  0.5 $\mu m$  CMOS (ATMEL) with 67k gates and 64 I/O.

## BTI Block Scheme



Input signals sampling and shaping at 80MHz

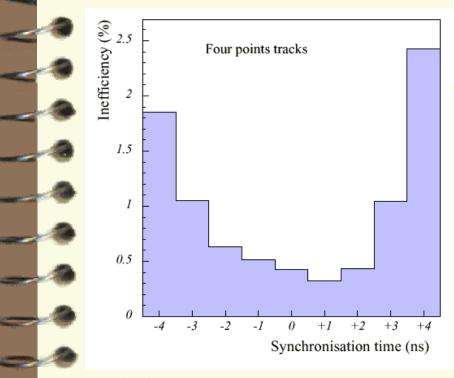
Track pattern detection and impact parameters calculation

Pattern selection

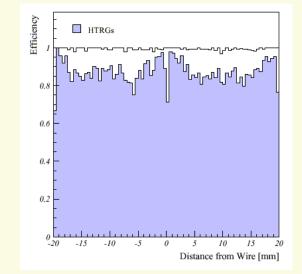
Angular filter and LTS logic

Control logic

### **BTI:** Documents


- Overview and performances of chamber trigger:
  - "Design and Simulations of the Trigger Electronics for the CMS Muon Barrel Chambers", Ist Workshop on Electronics for LHC Experiments, 1995.

#### FPGA prototype test:

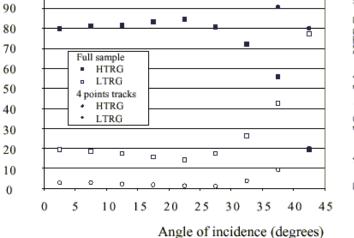

- "Beam Test Results of a FPGA Prototype of a Front-end Trigger Device for CMS Muon Barrel Chambers", IInd Workshop on Electronics for LHC Experiments, 1996.
- "Efficiency studies of the front-end trigger device of the muon drift tubes for the CMS detector at LHC", NIM A 398, 1997.
- Full performance prototype test:
  - "Local Track Reconstruction for the First Level Trigger in the CMS Muon Barrel Chambers", IVth Workshop on Electronics for LHC Experiments, 1998.
  - "Test results of the ASIC front-end trigger prototypes for the muon barrel detector of CMS at LHC", NIM A 438, 1999.
  - "Current knowledge of BTI performance in magnetic field", CMS Note 2000/044.

## BTI Performance: efficiency

Efficiency at normal incidence for different synchronization acceptance windows



| Synchronization range | ±2ns  | ±4ns  | ±6ns  | ±8ns  | ±10ns | ±12ns |
|-----------------------|-------|-------|-------|-------|-------|-------|
| HTRG fraction         | 84.3% | 83.0% | 81.7% | 79.0% | 75.0% | 70.5% |
| LTRG fraction         | 14.5% | 15.4% | 16.7% | 19.4% | 23.3% | 27.8% |
| Efficiency            | 98.8% | 98.5% | 98.5% | 98.5% | 98.3% | 98.3% |




## BTI Performance: efficiency

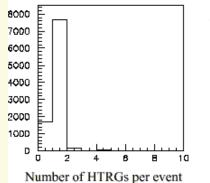
Efficiency and noise versus track incidence angle

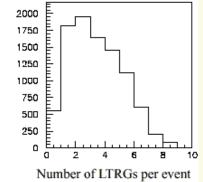
Fraction of triggers (%)

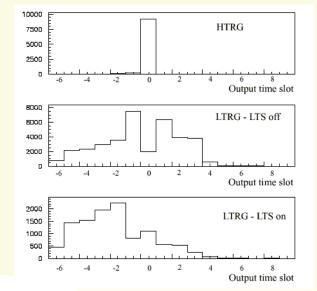
100



25 Fraction of Out of time HTRGs (%) Full sample 20 4 points tracks 15 10 5 0 5 10 15 20 25 30 35 40 45 0 Angle of incidence (degrees)


## BTI Performance: efficiency


Efficiency for different configurations

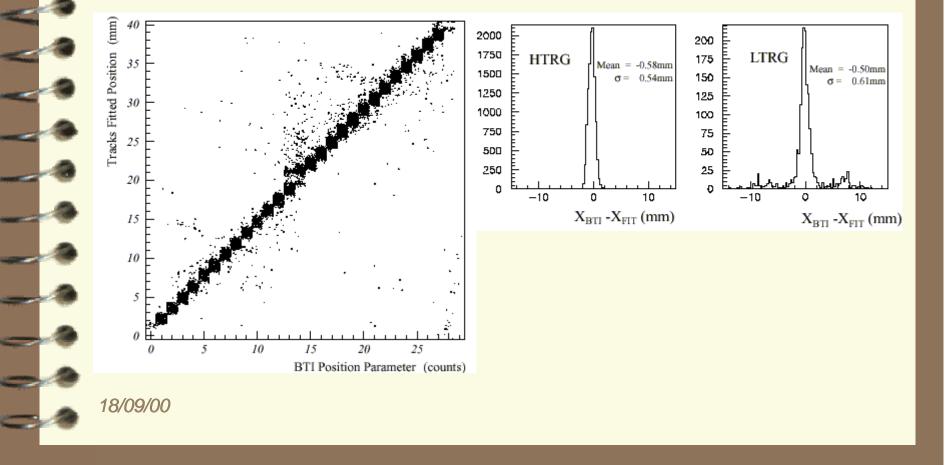

| ) | BTI acceptance | LTŞ | HTRG fraction | LTRG fraction | Inefficiency |
|---|----------------|-----|---------------|---------------|--------------|
|   | Standard       | off | 84.0%         | 15.6%         | 0.3%         |
|   | Standard       | on  | 85.1%         | 13.6%         | 1.3%         |
|   | Minimum        | on  | 70.7%         | 28.2%         | 1.1%         |
| • | Maximum        | on  | 84.8%         | 13.8%         | 1.4%         |

### BTI Performance: bx identification

BX Efficiency and noise







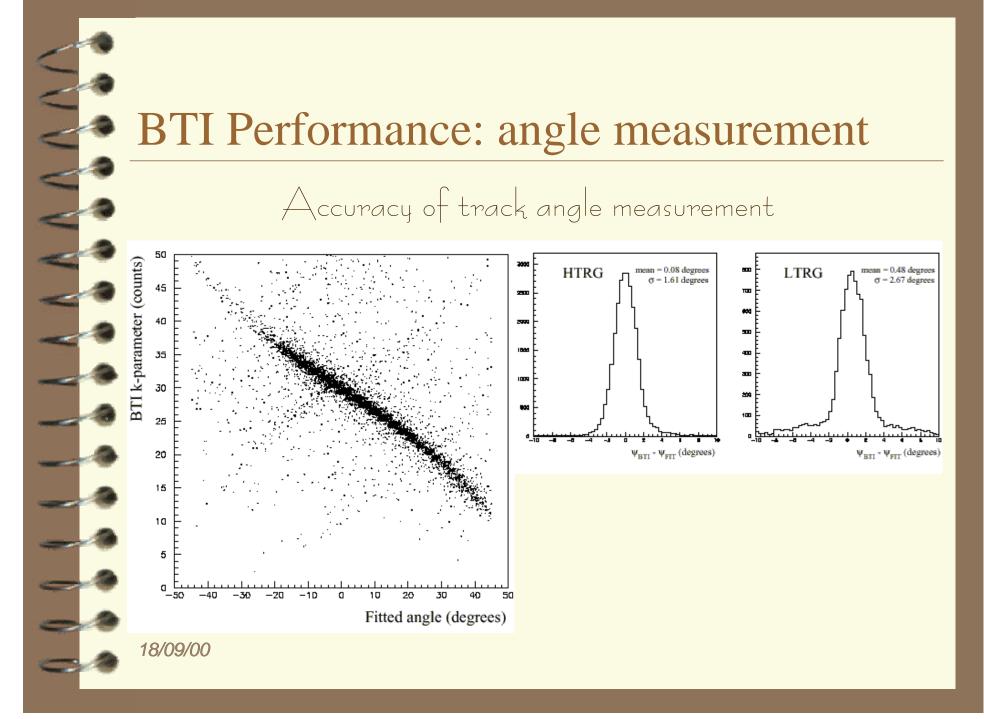
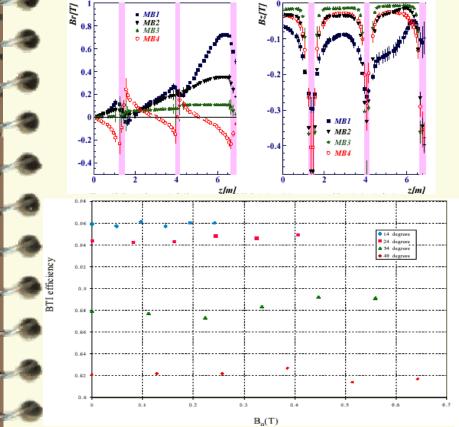
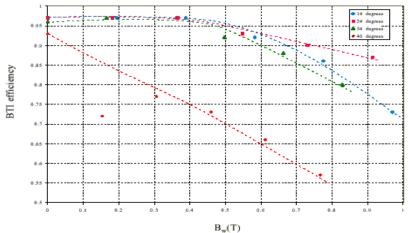


| BTI acceptance | LTS | %H out of time | %L out of time |
|----------------|-----|----------------|----------------|
| Standard       | off | 3.0%           | 351,2%         |
| Standard       | on  | 3.1%           | 148,2%         |
| Minimum        | on  | 1,1%           | 175.6%         |
| Maximum        | on  | 4.1%           | 165.3%         |

Table 4 - Average fraction of out of time triggers

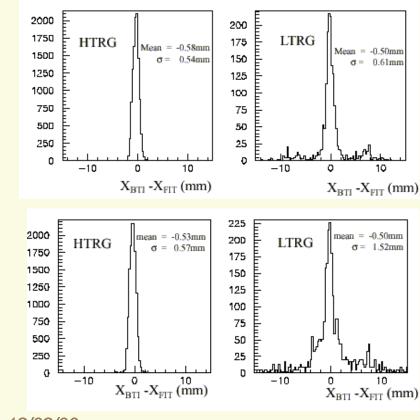

### BTI Performance: position measurement

Accuracy of track position measurement








#### Magnetic field effects



### BTI Performance: gamma rays background

Gamma rays background affects track position accuracy



Gamma rate = 10Hz/cm<sup>2</sup>

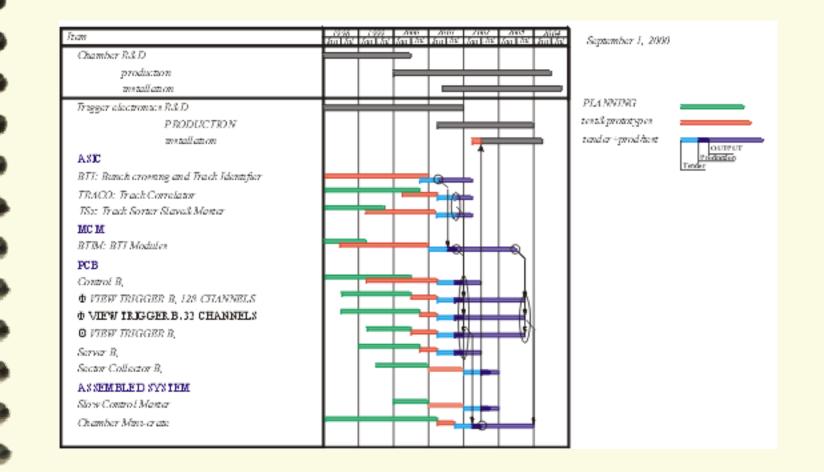
With gamma rays background

#### BTI Performance: gamma rays background

Gamma rays background affects efficiency

Gamma rate = 10Hz/cm<sup>2</sup>

|                                    | %HTRG | %LTRG | Inefficiency | %H out of time | %L out of time |
|------------------------------------|-------|-------|--------------|----------------|----------------|
| No Radiation                       | 84.0% | 15.6% | 0.3%         | 3.0%           | 351.2%         |
| Radiation<br>10 Hz/cm <sup>2</sup> | 83.0% | 16.6% | 0.5%         | 2.5%           | 800.0%         |


### BTI Performance: neutron tolerance

Neutron tolerance

|          | SI            | U cross section (on | n")           | Mean Time Between Failures (hours) |          |          |
|----------|---------------|---------------------|---------------|------------------------------------|----------|----------|
| Device   | Thermal       | LNL                 | UCL           | Thermal                            | LNL      | UCL      |
| LD reg   | < 1.38x10     | < 1.40x10           | < 1.00x10     | < 64                               | < 15587  | < 147892 |
| μP       | < 1.38x10     | < 1.40x10           | 3.85x10       | < 385                              | < 95340  | 23088    |
| FLASH    | < 1.38x10     | < 1.46x10           | < 1.00x10     | < 385                              | < 91101  | < 474734 |
| SRAM     | (1.13±0.2)x10 | (7.03±0.2)x10       | (1.03±0.2)x10 | 23.5                               | 12:63    | 23       |
| EPROM    | <1.38x10      | < 1.61x10           | < 1.00x10     | < 385                              | < 83/043 | < 474734 |
| Optolink | < 1.38x10     | < 1.43x10           | < 1.00x10     | < 385                              | < 93231  | < 474734 |
| ASIC TSS | < 2.68x10     | < 9.46x10           |               | < 33                               | < 32225  |          |
| ASIC BTI | < 1.75x10     | < 1.31x10           | < 1.00x10     | < 1.5                              | < 507    | < 4436   |

No measurable degradation was observed after  $10^{12}$  n/cm<sup>2</sup>. No SEE were observed.

# Project Schedule



## • BTI: Project Status

- BTI and DT chamber prototypes tested:
  - with muon beams and cosmic rays
  - with muon beams and radiation background (GIF)
  - with muon beams in high magnetic fields
- It is the state of the state
  - 10krad in gamma cell (2krad/minute)
  - thermal neutrons up to  $10^{10}$  n/cm<sup>2</sup>
  - fast neutrons from reactor (Prospero) up to  $10^{11}$  n/cm<sup>2</sup>
  - fast neutrons (< 10MeV) from d-Be reaction up to  $2x10^{12}$  n/cm<sup>2</sup>
  - fast neutrons (< 60MeV) from p-Be reaction up to  $10^{12}$  n/cm<sup>2</sup>

#### Functional behaviour and performance are fully satisfactory.

After irradiation tests up to the reported levels no degradation in the electrical or functional characteristics was measured. No SEE was observed.

#### BTI: Project status and future developments

#### Status and known problems:

- The ATMEL foundry in Europe has been closed. Only 1400 dies are still available from the first prototyping batch. The next batch could be produced by ATMEL in USA after a new prototyping phase and with 30 weeks of mask processing time.
- BTIM prototypes with LTCC substrate have low yield, about 40%.

#### *Future developments:*

- The BTI/BTIM tender must start as soon as possible to account for the unexpected delay needed by ATMEL to start chip production. A new prototyping batch could be received within mid 2001 placing the order for BTI production in December 1999.
- In order to gain time for BTIM production the tender must be anticipated and the 1400 available dies must be used for further prototyping.
- BTIM production schedule:
  - 50 pcs by September 2001
  - 950 pcs by December 2001
  - 5 lots of 2300 pcs from March 2002 to June 2003.