CMS Barrel Drift Tubes

<u>Neutron Irradiation Tests of Chamber</u> <u>Electronics</u>

Experimental setup and test results

S. Agosteo, L.Castellani, I. Lippi, R. Martinelli, P. Zotto

Fast neutrons experimental setup

Neutron Irradiation Test 06/99 Thermal neutron spectrum

Epithermal neutron fluence in irradiation cavity

Neutron Irradiation Tests

L. Castellani, I.Lippi, R.Martinelli, P.Zotto

<u>INFN Padova</u>

Reaction ${}^{9}\text{Be} + d \rightarrow {}^{10}\text{B} + n$ (d @ 6.5MeV)

Thermal neutrons obtained using a heavy water moderator and a graphite reflector.

Expected neutron rate at CMS is $1000 (n/cm^2s^{-1})$ of which 50% is thermal and 50% is fast neutrons.

Tested components

Component	Productor / Type / Year
LD Regulator	MICREL / 29501-3.3BU / 1997
μP	MOTOROLA / MC68HC16 / 1994
FLASH	ATMEL / AT29C101A-12PC / 1996
SRAM#1	SONY / CXK581000AM-70LL / 1993
SRAM#2	SONY / CXK581000AM-70LL / 1993
EPROM	ATMEL / AT27C512R-15JC / 1995
Optical transceiver	HONEYWELL/ HFM2600-1 / 1998
ASIC TSS	ES2 0.7 μm / TOP5 ceramic package / 1997
BTI	ATMEL 0.5 µm / LTCC substrate & in dies /1997
MAD	AMS 0.8 μm / BCMOS / 1997

Results with thermal neutrons

Component	Total rate	Device	Mean time between
	n/cm ²	SEU	failures in the full
		probability SEU/(n*cm ²)	detector hh:mm
LD Regulator	$3.54*10^{10}$	$< 2.68 * 10^{-10}$	> 33:09
μP	$3.54*10^{10}$	$< 2.68 * 10^{-10}$	> 198:51
FLASH	$3.54*10^{10}$	$< 2.68 * 10^{-10}$	> 198:51
SRAM#1	$3.54*10^{10}$	1.35*10 ⁻⁹	19:49
SRAM#2	$3.54*10^{10}$	$< 2.68 * 10^{-10}$	> 99:25
EPROM	$3.54*10^{10}$	$< 2.68 * 10^{-10}$	> 198:51
Optical transceiver	$3.54*10^{10}$	$< 2.68 * 10^{-10}$	> 198:51
ASIC TSS	$2.36*10^{10}$	$< 2.68 * 10^{-10}$	> 16:42
BTI	$2.36*10^{10}$	$<\overline{2.68*10^{-10}}$	> 00:59
MAD	9.10 *10 ⁹	See dedi	cated slides

Confidence level is 90%

Particular events

One LD regulator SEU happened after 7*10⁹ n/cm² integrated flux

Assuming they were due to a true LD regulator fault we should have

SEU probability Mean Time Between Failures 314:40 hh:mm

 $2.82*10^{-11}$ SEU/(n*cm²)

Results with fast neutrons

Component	Total rate	Device	Mean time between
	n/cm ²	SEU	failures in the full
		probability SEU/(n*cm ²)	detector hh:mm
LD Regulator	$1.27*10^{12}$	$< 7.50*10^{-12}$	> 1185:34
μP	$1.27*10^{12}$	< 7.48*10 ⁻¹²	> 7128:16
FLASH	$1.21*10^{12}$	< 7.83*10 ⁻¹²	> 6811:20
SRAM#1	7.49*10 ¹¹	$2.82^{*}10^{-10}$	94:29
SRAM#2	$1.52*10^{12}$	1.75*10 ⁻¹²	19019:27
EPROM	$1.10*10^{12}$	< 8.59*10 ⁻¹²	> 6206:52
Optical transceiver	$1.24*10^{12}$	$< 7.65 * 10^{-12}$	> 6970:36
ASIC TSS	$1.87*10^{12}$	$< 5.06*10^{-12}$	> 866:42
BTI	$1.35*10^{12}$	$< \overline{7.03^{*}10^{-12}}$	> 37:56
MAD	6.30×10^{10}	see dedie	cated slides

Confidence level is 90%

Particular events

Two microprocessor reboot happened

We could not uniquely identify the problem (program corrupted in RAM, I/O lines upset,...). Assuming they were due to a true microprocessor fault we should have

SEU probability Mean Time Between Failures 1.07*10⁻¹² SEU/(n*cm²) 12498:30 hh:mm

Thermal neutrons induced SEU on SRAM #1

Fast neutrons induced SEU on SRAM#1

Fast neutrons induced SEU on SRAM#2

Radiation damage verification

As a test of the radiation damage caused by the neutron interactions with the devices we compared the standby current of the devices

Device	Current before	Current after
	irradiation	irradiation
Control board	220 mA	222 mA
TSS	3.1 mA	3.4 mA
LD regulator	12.7 mA	12.7 mA
BTI	4.7 mA	4.7 mA

The Flash memory con still be reprogrammed The EPROM is still working with Vcc = HIGH, LOW, STD The levels of optical link are unchanged The ADC channels are still working correctly

Only the TSS shows an indication of damage, but it will be remade using 0.5 μ m technology