## Analisi del processo inclusivo $pp \rightarrow Z+X, Z \rightarrow \mu^+\mu^$ all'esperimento CMS

Autore: Eleonora Secco Relatore: Ugo Gasparini Correlatore: Ezio Torassa

## Obbiettivi

Analisi del segnale di Z;

- Determinazione della distribuzione del numero di Z in funzione di  $p_{\tau}$  e di  $\eta$ .

## Campioni di dati Monte Carlo

#### • $Z\mu^+\mu^-/Summer08$ (circa 60000 eventi corrispondenti a $\int L dt = 47.6 \ pb^{-1}$ ):

'/store/mc/Summer08/Zmumu/GEN-SIM-RECO/IDEAL\_V9\_v1/0004/06029757-B588-DD11-BDD7-001CC4AA8E08.root',

'/store/mc/Summer08/Zmumu/GEN-SIM-RECO/IDEAL\_V9\_v1/0004/0807444B-B388-DD11-B593-001CC445D6D2.root',

'/store/mc/Summer08/Zmumu/GEN-SIM-RECO/IDEAL\_V9\_v1/0004/0AAC8072-B788-DD11-BE1B-001E0BED1522.root'

# QCD/Summer08/Pt80to170 (circa 6M di eventi corrispondenti a $\int L dt = 3 pb^{-1}$ ):

'/store/mc/Summer08/QCD\_EMenriched\_Pt80to170/GEN-SIM-RECO/IDEAL\_V9\_v1/0051/06393517-978A-DD11-9147-001EC94BA119.root',

'/store/mc/Summer08/QCD\_EMenriched\_Pt80to170/GEN-SIM-RECO/IDEAL\_V9\_v1/0051/06861A82-9F8A-DD11-B81F-003048770B3A.root',

'/store/mc/Summer08/QCD\_EMenriched\_Pt80to170/GEN-SIM-RECO/IDEAL\_V9\_v1/0051/086192FD-978A-DD11-8467-003048770C5A.root'

QCD/Summer08/Pt30to80 (circa 10M di eventi corripondenti a  $\int L dt = 0.01 \ pb^{-1}$ ):

'/store/mc/Summer08/QCD\_EMenriched\_Pt30to80/GEN-SIM-RECO/IDEAL\_V9\_v1/0054/D0645C84-F28B-DD11-A067-00E08134B780.root',

'/store/mc/Summer08/QCD\_EMenriched\_Pt30to80/GEN-SIM-RECO/IDEAL\_V9\_v1/0054/D0B65683-348B-DD11-AD5B-00E08133F178.root',

'/store/mc/Summer08/QCD\_EMenriched\_Pt30to80/GEN-SIM-RECO/IDEAL\_V9\_v1/0054/D2A2784F-358B-DD11-84A6-0016368E0AE8.root'

...

## Campioni di dati Monte Carlo

- Processi simulati: pp → Z + X, con Z → μ<sup>+</sup>μ<sup>-</sup> e
   QCD μ+X.
- Si assume che il rivelatore sia in condizioni ideali (assenza di effetti di disallineamento, di scalibrazione). Inoltre si sono considerate condizioni di bassa luminosità (no pile-up);
- Per analizzare i dati Monte Carlo ho usato il software ufficiale di CMS. Versione: CMSSW\_2\_1\_10.

Massa Invariante muoni non isolati

Il criterio di selezione della coppia di muoni per la costruzione della massa invariante è il seguente:

I due muoni devono avere carica opposta;

• Il muone con  $p_{T}$  maggiore deve avere  $p_{T}$ >10GeV e l'altro  $p_{T}$ >5GeV.

## Massa Invariante con i muoni isolati

- I due muoni devono avere carica opposta;
- I due muoni devono essere isolati. Un muone si considera isolato se, dato un cono  $\Delta R = [(\Delta \eta)^2 + (\Delta \phi)^2]^{1/2} < 0.3$  attorno alla sua direzione, la  $\sum p_{\tau}$  delle tracce di tutte le particelle nel cono  $\Delta R$  è minore di 3 GeV. Inoltre si è escluso un cono  $\Delta R = [(\Delta \eta)^2 + (\Delta \phi)^2]^{1/2} < 0.001$ , che contiene la traccia del tracciatore associata al muone stesso, non si è così considerato il suo p<sub>\tau</sub> nel computo totale.
- Il muone con  $p_{T}$  maggiore deve avere  $p_{T}$ >15GeV e l'altro  $p_{T}$ >10GeV.

## Funzione di interpolazione

Per interpolare le due distribuzioni di Massa Invariante che ho ottenuto, ho usato una funzione che è somma di una esponenziale e di una Breit-Wigner convoluta con una gaussiana:

$$F_{fit}(m) = A e^{-Bm} + C \int \frac{e^{-\frac{(m-m')^2}{2\sigma_m^2}}}{\sqrt{2\pi}\sigma_m} f_{BW}(m') dm'$$

dove

$$f_{BW}(m') = \frac{\Gamma}{(m'^2 - M^2)^2 + (\Gamma^2/4)}$$

dove  $\Gamma$  è la larghezza di decadimento, M la massa,  $\sigma_m$  la risoluzione e C la costante di normalizzazione.

#### Distribuzione della Massa Invariante nel caso dei muoni non isolati per diversi tagli in p<sub>-</sub>:



## Segnale di Z

#### Primo caso: muoni non isolati.



Dove  

$$\Gamma=3.00\pm0.06$$
GeV,  
 $M=(91.14\pm0.02)$ GeV,  
 $C=45460\pm304$ ,  
 $\sigma_m=1.11\pm0.05$ .

Il rapporto segnale rumore in [75-105]GeV è: 42430/8000 = 5.3

#### Distribuzione della Massa Invariante nel caso dei muoni isolati per diversi tagli in p<sub>-</sub>:



## Segnale di Z

#### Secondo caso: muoni isolati.



Dove  $\Gamma = (3.08 \pm 0.05) \text{GeV},$   $M = (91.08 \pm 0.01) \text{GeV},$   $C = 42130 \pm 225,$  $\sigma_m = 1.07 \pm 0.04.$ 

Il rapporto segnale rumore in [75-105]GeV è: 39780/2128 = 18.7

# Distribuzioni differenziali $\frac{dN_z}{dp_T(Z)}$ e $\frac{dN_z}{d\eta(Z)}$

• Per calcolare  $\frac{dN_z}{dp_T(Z)}$  e  $\frac{dN_z}{d\eta(Z)}$ , sfrutto i risultati dell' interpolazione ottenuta dalla distribuzione di massa invariante dei muoni isolati, dato che il rapporto segnale rumore è migliore in questo caso ripetto a quello dei non isolati;

 Dato che non conosco la distribuzione del fondo sotto il picco di massa invariante, utilizzo il metodo così detto delle "side bands subtraction" per eliminare il fondo dal segnale vero.

#### Distribuzione di Z in funzione di $p_{\tau}$ e di $\eta$

Ogni evento ricostruito nell'istogramma della distribuzione di Z è stato corretto con l'efficienza di ricostruzione della Z calcolata a partire da quella di ricostruzione globale dei muoni,

trascurando la correlazione (piccola) tra i due muoni (che vanno in regioni distanti del rivelatore). La distribuzione in funzione di  $p_T$  è stata corretta con  $\varepsilon_z = \varepsilon_{\mu_+}(p_T)\varepsilon_{\mu_-}(p_T)$ , mentre quella in funzione di  $\eta$  con  $\varepsilon_z = \varepsilon_{\mu_+}(\eta)\varepsilon_{\mu_-}(\eta)$ . Queste distribuzioni verranno

corrette con  $\varepsilon_{\mu}(p_{\tau},\eta)$ :



## Distribuzione di Z in funzione di $p_{\tau}$



## Distribuzione di Z in funzione di $\eta$



## Sezione d'urto totale

# $\sigma_{qq->Z->2\mu} = (0,883 \pm 0,004) \text{ nb}$

Devo ancora determinare l'errore sistematico sulla misura della sezione d'urto. Le sorgenti di errore sistematico nella mia analisi sono:

