First look at PtHat

Mario Galanti

Mario Galanti – University of Cyprus

Overview

Aim of the study:

Determine whether we can apply a cut on the PtHat for the generation of the ppMu[Mu]X sample, in order to gain efficiency

How the analysis is done:

PtHat is reconstructed a posteriori, looking at the momenta of the partons taking part to the 2->2 hard interaction

Sample analyzed:

- PpMuMuX currently in the Padova cluster
 - 2 same-sign muons with pT>2.5GeV and |eta|<2.5 required at the generator level</p>
- Does the SS requirement affect the kinematics?
 - I guess **no**, but I have no data to justify this claim

PtHat a posteriori calculation (Fotis)

The PtHat is defined as the Pt of the outgoing particles, calculated in the reference frame of the hard interaction.

- 1) Incoming and outgoing partons are respectively #5,6 and #7,8 in the Pythia event record (started counting from 1)
- 2) Consider the Reference Frame in which the center of mass of the system formed by the 2 incoming particles is at rest
- 3) Boost the incoming and outgoing 4-momenta to this RF
- 4) This is not enough, because the incoming 3-momenta are not yet oriented along the z-axis (so the Pt is still calculated WRT a wrong plane)!
- 5) Perform a rotation along Z, and then another rotation along Y, to put the incoming 4-momenta along the Z axis
- 6) The Pt of each outgoing particle in the boosted and rotated RF is the PtHat

PtHat distribution

- PtHat distribution of ppMuMuX events shows no cut for low values
 - Right plot is a zoomed view of the left one
 - The distribution is anyway very low for small PtHat values, so there is room to apply a cut without affecting too much the sample composition

Outgoing eta distribution

Eta distribution of outgoing partons

- Calculated in the boosted and rotated frame (proper RF of the scattering)
- Right plot is the sum of the distributions in the left one
- There is perhaps room for a cut at high eta values, but not much

Generated muons Pt

Leading (blue) and second leading Pt generated muons

Mario Galanti – University of Cyprus

Reconstructed muons Pt

No association or quality cuts applied to Reco Muons, only innerTrack required

Generated muons Eta

Leading (blue) and second leading Pt generated muons

No difference is visible in distributions

Mario Galanti – University of Cyprus

Reconstructed muons Eta

- Leading (blue) and second leading Pt reconstructed muons
- Difference is due to the different reconstruction efficiency

Gen-reco comparison - leading Pt

- More reco than gen muons for Pt higher than ~5 (??)
 A non negligible number of muons is reconstructed at very low Pt
 - Fakes, or real low-Pt muons in events in which the first two are not reconstructed?

Gen-reco comparison - 2rd leading Pt

Same effects of previous slide, amplified

Reco vs. gen Pt - leading Pt muons

Now the reconstructed muons Pt is well correlated to gen muons also in the lower region

Uncorrelation seen in previous version was due to a bug in the code

Mario Galanti – University of Cyprus

Reco vs. gen Pt - 2rd leading Pt muons

Also for the 2nd leading Pt muons (gen and reco), the same effect is visible, but amplified

Mario Galanti – University of Cyprus

Effect of PtHat cut on lead. genMu

- PtHat>2,4 give almost no effect (mainly because of very few events in that region), while visible changes are given by cuts at 6 and 8
 - As expected, low Pt muons are the ones most affected by the cut

Effect of PtHat cut on 2nd lead. genMu

Results are similar to the leading generated muon case

Mario Galanti – University of Cyprus

Effect of PtHat cut on lead. recoMu

Again similar results

Also the mis-reconstructed low-Pt muons are affected by the cut (perhaps a bit less than the others)
No cut

Mario Galanti – University of Cyprus

1/18/10 / Page 16

PtHat>2

Effect of PtHat cut on 2nd lead. recoMu

Again similar results

And again, also the mis-reconstructed low-Pt muons are affected by the cut

Efficiency eta profile for genMu

- Profiles are fairly flat
- No visible difference between leading and 2rd leading

Mario Galanti – University of Cyprus

Efficiency eta profile for recoMu

- Small dependance of efficiency from eta
 - Due to the fact that barrel muons have higher Pt, so are in the region less affected by the cut
- Also, visible difference between lead. and 2rd lead
 - Probably due to the same reason as above: the region not affected by the cut is different for lead and 2rd lead

Gen and reco muons invariant mass

Invariant masses of the mu-mu system at gen and reco level

Zoom of invariant mass regions

- Phi and J/Psi peaks are well visible
- I don't see any hint of other resonances
 - Too low S/N for our statistics, or the particles aren't even generated?

Mario Galanti – University of Cyprus

Conclusions

PtHat>2 (or >4) cuts give almost no effect to the gen and reco distributions

• Applying a high-pass cut to PtHat seems a viable alternative...

In any case, I'd like to start some preliminary study to see **if** (and **how much**) we gain (in terms of speed) with this cut

...but!

- The lack of effects due to the PtHat cut is mainly due to the very small phase space at low PtHat
- The smallness of that region of phase space is probably due to the requirement of 2 generated muons with Pt>2.5GeV
- Comparison between reco and gen muons gives some (unconfirmed!) evidence that this cut should be relaxed
 - There are muons reconstructed with very low Pt that match no generated muons
- Relaxing the Pt cut on muons will likely enlarge the low-PtHat phase space
- So, effects of the PtHat cut could become significant!

Conclusions (2)

- This means that, in order to increase the generation efficiency we could, either
 - Introduce a PtHat cut

or

Relax the muon Pt cut

or

- A combination of the above two
- More data are needed to understand which is better...

Ideas??? :-)