GEOMETRY: MB1 upstream, can be rotated around a central vertical axis; MB3 downstream, on the Padova support, can be translated transversally to the beam. Distance between MB1 and MB3 \leq 100 cm.

Default **BEAM MOMENTUM**: 200 GeV/c. **ACQUISITION RATE** : 1000 ev/spill @ 1 spill/16 sec = $2 \cdot 10^5$ ev/h. Two possible **TRIGGERS**: 1) beam scintillator trigger (BT); 2) Autotrigger from 1 chamber only (AT) (selecting only correlated HTRG, i.e., *HH*+*HL*)

1) SYNCHRONIZATION

10K events/run (5 min, including chamber movements and TRB configuration)

1.1) 15 deg., ST = correct, correct+1, correct-1, phase scan at 1 ns step.		
Trigger= AT	TOT= 75 runs, 6 h.	
1.2) 0, 15, 25 deg., $ST = correct$, phase scan at 1 ns step.		
Trigger= AT and BT	TOT=125 runs, 10 h.	
1.3) 15 deg, $ST = correct$, phase scan at 1 ns step.		
Trigger= alternative AT (selection HH+HL+H)	TOT= 25 runs, 2 h.	
1.4) -15 deg, $ST = correct$, phase scan at 1 ns step.		
Trigger= AT	TOT= 25 runs, $2 h$.	

GRANDTOT: 250 runs, 20 hours.

2) BTI ACCEPTANCE WINDOW (and DIMUONS).

100K events/run, Trigger = BT

2.1) Acceptance= standard	Angle= 0, 10, 20, 30, -10, -20, -30 deg
	(also useful for dimuon studies: run with and without backup-mode)
2.2) Acceptance= ± 1	Angle= 0, 10, 20, 30 deg
2.3) Acceptance= ± 2	Angle= 0, 10, 20, 30 deg

GRANDTOT: 22 runs, 11 hours

3) DIMUONS

500k events/run, Trigger = BT

3.1) Angle = 15 deg., without and with backup-mode

GRANDTOT: 2 runs, 5 hours

4) Runs with IRON BRICKS

100K events/run, Trigger = BT

4.1) Beam momentum = 200, 50, 100, 30, 300 GeV/c Angle= 0 deg. (?) Runs with and without bricks.

GRANDTOT: 10 runs, 5 hours.

5) Tests with GAMMA SOURCE

100K events/run, Trigger = BT

5.1) Noise rate = 30 (if possible), 10, 3 Hz/cm^2 Angle = 0 deg (?), beam momentum = 200 GeV/c, NO iron bricks.

5.2) Noise rate = 10 Hz/cm^2 WITH iron bricks Angle = 0 deg (?), beam momentum = 200 GeV/c.

GRANDTOT: 4 runs, 2 hours

SUMMARY: (1) + 2(3) + 3(4) + 5(3) = 43 hours = 2 days.

WITH LOWER PRIORITY:

6) Other SYNCHRONIZATION runs

10K events/run (5 min/run)

In order of priority:

6.1) angles = 25, 0 deg, ST = correct +	l, correct-1, phase scan at 1 ns step
Trigger = AT and BT .	TOT= 200 runs, 17 h

- 6.2) angle = 30 deg, ST= correct, phase scan at 1 ns step. Trigger = AT and BT TOT= 50 runs, 4 h
- 6.3) angle = 20 deg, ST= correct, phase scan at 1 ns step. Trigger = AT and BT TOT= 50 runs, 4 h
- 6.4) angle = 10 deg, ST= correct, phase scan at 1 ns step. Trigger = AT and BT TOT= 50 runs, 4 h
- 6.5) angle = 5 deg, ST= correct, phase scan at 1 ns step. Trigger = AT and BT TOT= 50 runs, 4 h

GRANDTOT: 400 runs, 33 hours

NOTE: runs at point 2.1), 4), 5) can be exploited for the DTTF test.